
GRASS GIS: A Useful Tool for the
Mountain Cartographer

Pat Dunlavey
Pat Dunlavey Cartographics
40 Oblong Road
Williamstown, MA 01267
Tel: 413-458-9273
Email: pat@pdcarto.com

Presented at:
International Cartographic Association (ICA)
2002 Mountain Cartography Workshop
Timberline Lodge, Mt. Hood, Oregon

INTRODUCTION

The genesis of digital cartography was initially marked by an
emphasis on vector and text editing and rendering. The first
digital maps were hardly more than pen plots of vector data.
Later, as powerful raster editing tools became available,
especially Photoshop, digital raster backgrounds became
commonplace, backing up vector foreground information.
These raster backdrops are used for depicting terrain
shading, land cover or other area classification, and aerial or
satellite imagery. As Tom Patterson’s work with rasterized
drainage suggests, the trend for working more and more in
the raster domain is such that no cartographic element is
excluded from possible treatment as raster data. It is no
surprise then that software designed to work with pixels, or
raster data, has come to share equal importance with vector
software in the cartographer’s toolkit. Adobe Photoshop,
with its rich layering and compositing abilities, dominates
this niche. However, Photoshop lacks some important
functionality for working with cartographic data, such as the
ability to convert data from one projection to another, or to
work effectively with deep-bit data (greater than 8 bits per
channel), such as digital elevation models. To cover these
gaps, most cartographers have assembled a collection of
special-purpose utilities. To make things more confusing,
the availability of inexpensive utilities, such as raster
reprojection software, is different on various operating
systems, such that many cartographers find that they must
maintain both Macintosh and Windows systems.

I have found that GRASS <http://grass.itc.it/>, a free open
source UNIX GIS software system which can run on various
hardware platforms under the Linux OS, on Macintoshes
under OSX, and on Windows systems running cygwin
<http://cygwin.com/>, provides a very effective complement
to Photoshop. GRASS can tackle most raster geodata
processing tasks, leaving much less need for additional
cartographic raster tools.
(GRASS is primarily a raster GIS. It has modules for
importing, displaying and manipulating vector GIS data, but I
have not explored them and therefore, I will not be
discussing them here.)

Some Background on GRASS
To quote the GRASS Frequently Asked Questions:
“Geographic Resources Analysis Support System,
commonly referred to as GRASS GIS, is a Geographic
Information System (GIS) used for data management, image
processing, graphics production, spatial modelling, and
visualization of many types of data. It is free software
released under GNU General Public License (GPL).” It was
originally developed at the United States Army Construction
Engineering Research Laboratories (USA-CERL) starting in
1982, as a tool for land management and planning by the
US military. It is widely used in academic and government
settings, as well as commercially. USA-CERL completed its
last full release of GRASS, version 4.1 in 1992, followed by
updates and patches through 1995. Since then, an
international community of GRASS developers, very similar
to the Linux developer community, has functioned very
effectively to further enhance GRASS, adding a graphical
user interface, and improving floating point functionality, as
well as adding over a hundred new modules for applications
like erosion and wildfire modeling, three dimensional terrain
visualization, and import and export of new file formats.
Currently, development is coordinated by Markus Neteler, of
Germany.

GRASS, like much software developed under UNIX, is
actually a large collection of somewhat independent
software programs which are designed to be run from a
terminal prompt. For example, to create a new data layer by
importing a TIFF image, you might type the following
command in the GRASS shell terminal:

GRASS:~ > r.in.gdal –o –e
input=/home/pat/incoming/dem2.tif
output=DEM2 title=dem2

This command would use the r.in.gdal module to read the
TIFF file “dem2.tif” into the current Mapset, giving it the title
“dem2”. However, it is not usually necessary to know how to
type the terminal command, since GRASS includes an,
admittedly somewhat clunky, graphical user interface. To
accomplish the same thing under the GRASS GUI, you
would select Import>Raster maps>Various, which would
display the following dialog:

Figure 1

GRASS programs generally work in this way: you type the
command followed by required arguments (or construct it

GRASS 12/8/2002 2

through the GUI), and the module does whatever it does,
and then exits.

Some commands are used to display a map: because
GRASS does not keep your current work in memory with an
automatically refreshing display, you have to explicitly tell it
to display a map. But first, you have to create a window, and
then select that window for displaying!:

GRASS:~ > d.mon start=x0
using default visual which is
TrueColor
ncolors: 16777216
Graphics driver [x0] started
GRASS:~ > d.mon select=x0
GRASS:~ > d.rast map=lc
 100%
GRASS:~ >

Here we’ve created a window x0, selected it for display, and
then painted the map called “lc” (land cover) to it, with the
following result:

Figure 2

Experienced GRASS and UNIX users use advanced
techniques such as piping the results of one command into
another on the command line, or scripting a complex series
of commands through the UNIX shell. I will show a little later
how simple scripting was used to implement some useful
functions.

GRASS Modules
GRASS has a very large number of commands, which are
broken down as follows:

Database Commands
Display Commands
General Commands
Grid 3D Commands
Imagery Commands
Miscellaneous Commands
Models: simulation models
Paint Commands
Photo Commands
PostScript Commands
Raster Commands

Shell Scripts
Sites Commands
Vector Commands

The raster commands alone number 150, and counting, as
seen in this table:

All commands are documented via the ubiquitous UNIX
“man” pages.

r.agnps50.input r.in.doq r.null r.stats

r.agnps50.run r.in.dted r.out.agnps r.sum

r.agnps50.view r.in.elas r.out.arc r.sun

r.answers r.in.gdal r.out.ascii r.sunmask

r.average r.in.gridatb r.out.bin r.support

r.basins.fill r.in.hdf r.out.elas r.surf.area

r.bilinear r.in.ll r.out.gridatb r.surf.contour

r.binfer r.in.miads r.out.hdf r.surf.fractal

r.buffer r.in.pbm r.out.mpeg r.surf.gauss

r.cats r.in.poly r.out.pov r.surf.idw

r.circle r.in.ppm r.out.ppm r.surf.idw2

r.clump r.in.shape r.out.rlc r.surf.random

r.cn r.in.sunrast r.out.tga r.thin

r.coin r.in.tang r.out.tiff r.timestamp

r.colors r.in.tiff r.out.xyz r.to.gnuplot

r.colors.paint r.in.utm r.param.scale r.to.sites

r.combine r.infer r.patch r.topidx

r.composite r.info r.plane r.topmodel

r.compress r.kappa r.poly r.transect

r.contour r.kineros r.profile r.tribs

r.cost r.lags r.proj r.univar

r.covar r.le.dist r.quant r.volume

r.cross r.le.null r.recode r.water.fea

r.describe r.le.patch r.random.cells r.water.outlet

r.digit r.le.pixel r.random.surface r.watershed

r.direct r.le.rename r.rational.regression r.weight

r.distance r.le.setup r.random r.weight2

r.drain r.le.trace r.reclass r.weighted.cn

r.feat.thin r.line r.report r.what

r.fill.dir r.linear.regression r.resample r.wrat

r.fillnulls r.los r.rescale

r.flow r.mapcalc r.rescale.eq

r.flowmd r.mask r.rescale.inf

r.grow r.mask.points r.ros

r.his r.median r.runoff

r.hydro.CASC2D r.mfilter r.slope.aspect

r.in.arc r.mode r.spread

r.in.ascii r.moran r.spreadpath

r.in.bin r.neighbors r.stage3

r.in.dem r.nntool r.statistics

GRASS 12/8/2002 3

In the remainder of this paper, I would like to feature the
three commands that are highlighted above, r.in.gdal,
r.mapcalc, and r.proj, and discuss their applicability to
tasks commonly encountered in natural terrain cartography.

DATA IMPORT FORMATS SUPPORTED BY GRASS,
USING GDAL (GEOSPATIAL DATA ABSTRACTION
LIBRARY)
GRASS supports a wide variety of data types, particularly
through its r.in.gdal command, making it an effective bridge
between raw GIS data and Photoshop:

• 2D raster data,
• 3D raster data (voxels),
• topological vector data (2D, currently extended to

3D)
• point data (called sites)

In detail:

• Raster: ASCII,
ARC/GRID, E00, GIF,
GMT, TIF, PNG,
ERDAS LAN, Vis5D,
SURFER (.grd) ...
Using GDAL library
(r.in.gdal) more
formats like USGS-
DEM, CEOS (SAR,
LANDSAT7 etc.) can
be read

• Image (satellite and
air-photo): AVHRR,
BIL/BSQ, ERDAS
LAN, HDF,
LANDSAT TM/MSS,
NHAP aerial photos,
SAR, SPOT, ...

• Vector: ASCII,
ARC/INFO
ungenerate,
ARC/INFO E00,
ArcView SHAPE (with
topology correction),
BIL, DLG (U.S.), DXF,
DXF3D, GMT, GPS-
ASCII, IDRISI, MOSS,
MapInfo MIF, TIGER,
VRML, ...

• Sites (point data
lists): XYZ ASCII,
dBase

GDAL Raster Formats

Format Name Creation Georeferencing
Arc/Info ASCII Grid No Yes

Arc/Info Binary Grid No Yes

BSB Nautical Chart Format No Yes

CEOS (Spot for instance) No No

First Generation USGS DOQ No Yes

New Labelled USGS DOQ No Yes

Military Elevation Data No Yes

Eosat Fast Format No No

ERMapper Compressed Wavelets
(.ecw) Yes Yes

ESRI .hdr Labelled No Yes

Envisat Image Product No No

FITS Yes No

Graphics Interchange Format (.gif) Yes No

Arc/Info Binary Grid Yes Yes

GRASS Rasters Yes Yes

TIFF / GeoTIFF Yes Yes

Erdas Imagine .hfa Yes Yes

Atlantis HKV Image Yes Yes

Japanese DEM (.mem) No Yes

JPEG JFIF Yes Yes

Atlantis MFF Yes Yes

OGDI Bridge No Yes

PCI .aux Labelled Yes No

Portable Network Graphics Yes No

Netpbm (.ppm,.pgm) Yes No

USGS SDTS DEM No Yes

SAR CEOS No Yes

USGS ASCII DEM No Yes

Table 1

As you can see, with the GDAL import library, GRASS
supports the importation of many raster data formats, and if
the source data supports georeferencing, then that
georeferencing is preserved in GRASS.

Raster data imported into GRASS may be in the form of
integer data with 8, 16 or 32-bit precision, or floating point
data. Color imagery may be handled either as indexed color
(where each value represents a particular RGB color), or as
a group of integer maps, each representing a color band,
e.g. red, green and blue.

On the output side, GRASS supports several formats that
can be read by Photoshop, with TIFF and binary being the
most commonly used.

REPROJECTION
For the personal computer-based cartographer, perhaps
one of the most troublesome challenges is in dealing with
raster data which is not in the same projection as the map
being developed. On the Macintosh, GeoCart, at $500, may
be prohibitively expensive for this occasional task. On the
Windows side, I am not aware of any raster reprojection
software currently available for a cost of under $1000.
Therefore the ability in GRASS, a totally free program, to
handle raster reprojection can easily justify the trouble of
learning how to use it.

To reproject data in GRASS, you use the r.proj command
to copy a map from one Location to another. For this to
make any sense, one needs to understand how GRASS
data is organized and therefore a quick digression is called
for…

A digression: How GRASS data is organized
Unlike many of the applications that we may be used to in
the Windows and Macintosh environments, GRASS does
not store a project as a single file. For example, a multi-
layered Photoshop file, which could technically be described
as an assemblage of individual images together with

GRASS 12/8/2002 4

parameters defining how the images overlay and behave
when overlaid, is nonetheless stored as a single monolithic
file which cannot generally be manipulated outside of
Photoshop. GRASS, on the other hand, organizes a project
into a number of files organized into a file and directory
structure on your hard disk. A given GRASS project is
identified by its Database, Location, and Mapset. (GRASS
has various tools for manipulating these elements of a
project, and it’s generally best to let GRASS perform these
manipulations, rather than to try to create, delete and modify
these files directly.)

The Database is the top level directory, under which one
can organize files for a particular project:

Figure 3

For our Alaska map project, we created a GRASS Database
in /home/pat/Grass5Data/Alaska/. (Note that there is
another Database here in /home/pat/Grass5Data/Berkshire/,
used for a different project.) Inside the ../Alaska directory,
are a number of subdirectories (i.e. folders) each of which
corresponds to a particular GRASS Location, such as
“USAK”, which in this case, is the main Location for our
Alaska map project.

Figure 4

The Location always contains a subdirectory entitled
“PERMANENT”, which is actually a special Mapset. It is
where information on the projection/coordinate system is
stored and how cells in the raster relate to the coordinate
system. Therefore, all maps in the Location “USAK” have
the same coordinate system, which is defined here, in
“PERMANENT”.

“PROJ_INFO, a text file, defines projection parameters, e.g.:

name: Albers Equal Area
proj: aea
ellps: clark66
a: 6378206.4000000004
es: 0.0067686580
f: 294.9786982000
lat_0: 50.0000000000
lat_1: 55.0000000000
lat_2: 65.0000000000
lon_0: 74.6938150000
x_0: 0.0000000000
y_0: 0.0000000000

“WIND”, another text file, defines the current region – the
rectangle within the coordinate system described by your
location’s projection which defines the limits of your map:

proj: 99
zone: 0
north: 2529149
south: 456509
east: 987151
west: -2685688
cols: 7346
rows: 4145
e-w resol: 499.97808331
n-s resol: 500.03377563

(These files inside the “PERMANENT” Mapset are created
during the new Location/Mapset creation process. More on
that in a moment.)

A Mapset is roughly analogous to a Photoshop
document. It can contain a number of data layers, or
maps, which enjoy a kind of awareness of one
another. Under this USAK Location, we have a
Mapset entitled “dems”, which contains all the
destination data layers for our Alaska map project.
The .../dems folder contains all the data in its raw form
and one does not normally have any reason to poke
around inside here.

Figure 5

GRASS 12/8/2002 5

When you launch GRASS, you are presented with the
option to use an existing Database/Location/Mapset, or to
create a new one:

Figure 6

If you elect to create a new Location, GRASS launches a
terminal program which leads you through the process of
entering the projection and default region information for that
location. Once you have gathered the information, the
process of defining a new Location takes just a couple
minutes.

Figure 7

Reprojection continued…

To reproject a map from one projection/coordinate system to
another, you need to have created the corresponding source
and destination GRASS Locations and have imported the
data to be reprojected into the source Location. That having
been done, and after starting a GRASS session with the
destination Mapset, r.proj is invoked from the command
line, to copy the source map to the destination Mapset, with
reprojection applied.

For our Alaska project, we used land cover data from the
Eros Data Center Global Land Cover Characterization
project for Russia and Canada. The GLCC data sets for
North America and Asia were each projected to our map’s
Location…

…and then merged into a single image.

Figure 8

THE MAPCALC MODULE
Perhaps the single most powerful and flexible tool in
GRASS is r.mapcalc. With mapcalc, one can perform
algebraic and logic operations within and between maps. A
very simple operation is to merge two maps into a third,
using the logic that if a pixel in map A is null, then use the
corresponding pixel from map B, otherwise, use the pixel
from map A. A command to merge the Asia and North
America land cover maps could be…

GRASS:~ > r.mapcalc
‘lc=if(isnull(nalc),aslc,nalc)’

..where “lc” is the destination land cover map name, and
“nalc” and “aslc” are the source land cover maps.

In a different example, mapcalc can do smoothing by
averaging the values of neighboring pixels…

Reproject

GRASS:~ > r.proj input=lc location=AS_LAEA dbase=/home/pat/Grass5Data/USAK/ mapset=usgs_veg method=nearest

Reproject

GRASS:~ > r.proj input=lc location=NA_LAEA dbase=/home/pat/Grass5Data/USAK/ mapset=usgs_veg method=nearest

GRASS 12/8/2002 6

GRASS:~ > r.mapcalc ‘smooth=(src[-1,-1]+src[-
1,0]+src[-1,1]+src[0,-1]+src[0,0]+src[0,1]+src[1,-
1]+src[1,0]+src[1,1])/9’

… where the [x,y] notation is used to specify an offset
relative to the current pixel.

Or, we could perform a weighted average of two maps…

GRASS:~ > r.mapcalc ‘wtavg=(src1*6 + src2*4)/10’

Using Mapcalc to grow land cover data
We can take this a little further to solve a common problem
when trying to combine raster data and vector data, where a
water edge in the vector data does not coincide perfectly
with the land cover edges suggested in the raster data. In
our Alaska project, our land cover raster data did not match
well with our vector coastline data, as can be seen here (the
black areas fringing the coastlines).

Figure 9

To solve this problem, we decided to grow the non-water
pixels into the water pixels. Since this is not a built-in
function of GRASS, we used Mapcalc to accomplish it.

The logic is as follows:

If the pixel is water, then look at the four
cardinal neighbor pixels. If a neighbor is not
water, then assign the value of that neighbor
to the pixel.

This can be coded in the Mapcalc “language” as follows…

r.mapcalc ‘grown = if(src, src,
 \\
 if(src[0,-1], src[0,-1], \\
 if(src[0,1], src[0,1], \\
 if(src[-1,0], src[-1,0], \\
 if(src[1,0], src[1,0] \\
)))))’

…where “src” is the source map and “grown” is the
destination map, and the index value for water is zero.

The result is that every water pixel that is adjacent to a land
pixel takes on the value of the land pixel. By looping through
this several times, we can grow the land cover into the water

by several pixels. Rather than figure out how to type this
every time, I wrote a UNIX shell script that automates the
process. The script prompts for a source map name, and for
the number of growth iterations. The result will be a new
map named “grown”.

We ran the “grow” script on our Alaska land cover data with
ten iterations. This image shows how it eliminated most of
the gaps relative to the coast line.

Figure 10

Using Mapcalc to create shaded relief
There are numerous utilities available for creating shaded
relief from digital elevation models. However creating relief
shading in GRASS has some significant advantages,
including the abilities to work with deep-bit DEM data
(greater than 8-bits per pixel), and to maintain a
georeferenced environment. The method we used to create
shaded relief for the Alaska project points out some unique
advantages to using GRASS.

Our DEM data was GTOPO30, which is in a geographic
(latitude/longitude) projection. Of course we needed to
reproject it to our USAK Albers Equal Area projection.
However, I had the idea of illuminating the elevation model
as though the direction of the sunlight were wrapping around
with longitude. All symbology and type on the map is
oriented to geographic north, and I felt it would be distracting
if the angle of illumination did not likewise maintain an
orientation relative to geographic north. Therefore, we chose
to render the shaded relief while still in the geographic
projection, and then reproject it to our working projection.
We discovered when we tried this that the shaded relief
looked odd because of differences in scale between the N-S
and E-W at high latitudes. We were using a script with
Mapcalc (one that is provided in the standard GRASS
distribution) to do the shading. Therefore, it was quite easy
to open up the script and modify the code so that it would
account for the differences in scale between the N-S and E-
W axes, as well as for the difference in horizontal and
vertical units.

We also wanted to resolution-bump the DEM data, to
enhance perception of the the large mountain ranges. This
was our process in detail:

 Import GTOPO data to GRASS (figure 11 shows
rendering from original DEM)

 Resolution-bump the DEM:

GRASS 12/8/2002 7

 Create a smoothed copy of the DEM by
running it through an r.neighbors filter with 5x5
window (figure 12)

 Add the smoothed DEM and the original DEM
together using a weighted average

 Generate shaded relief from the res-bumped DEM
(using differential x/y scaling) (figure 13)

 Reproject the shaded relief to our working map
projection (figure 14)

Figure 11 – a shaded relief rendering of the original
GTOPO DEM

Figure 12 – a shaded relief rendering of the 5x5
smoothed

Figure 13 – the resolution-bumped and relief-shaded
DEM

Figure 14 – the final result, after projection

GRASS AND PHOTOSHOP WORKFLOW
I have mentioned the value of doing raster work inside of a
georeferenced environment. In GRASS, all data is
georeferenced. Assuming you employ a non-arbitrary frame
of geographic reference, GRASS can move data from one to
another quite easily (see Reprojection above). But how can
we make GRASS work together with Photoshop, which does
not georeference data explicitly? The answer: carefully!

Moving data from GRASS to Photoshop is quite
straightforward (with one significant exception) by employing
one of the image formats supported by Photoshop.
However, there are times when one will want to create data
in Photoshop and then bring it into GRASS. You need to
take special precautions to impose and maintain implicit
georeference in Photoshop.

Perhaps the simplest method is to start out with a
geographic image in GRASS which when exported to
Photoshop can be used to register other images “by eye”.
This reference image defines the geographic region in
Photoshop. (When working in Photoshop, the canvas size
should not be changed, and the reference image should not
be moved.) With the reference image in the background,
new image layers may be pasted in and transformed to align
with the reference image.

TIFF or
Binary

GRASS

Photoshop

Raster
GIS Data

Raster
GIS Data

Geo-
reference
‘by eye’

Non-
georeferenced

Image Data

GRASS 12/8/2002 8

SOME THINGS THAT ARE NOT SO NICE ABOUT GRASS
• Just getting started is a significant challenge,

especially if you are not familiar with UNIX – (that’s
most of us).

• The user interface is incomplete, and does not
shield the user from the command line
environment.

• There is no technical support. (though the
developer and user community is very helpful.)

• Some modules are more up to date than others
(e.g. r.out.tiff cannot export floating point data).

• Several very important modules are not included in
the standard distribution (due to licensing issues).
The GDAL module, for example, must be obtained
separately, and linked into GRASS.

CONCLUSIONS
I think I have demonstrated through these few examples that
GRASS can serve as a powerful tool in the cartographer’s
collection, and can integrate very well with Photoshop to
cover the majority of raster data processing needs. I
personally have only begun to explore the possibilities. The
learning curve is steep, and the inconvenience of moving
between operating environments can be daunting. But the
price is right. And for the technically oriented cartographer,
the possibilities that can be opened by GRASS are limited
only by the imagination.

APPENDICES

A: Exporting A Floating Point Grass Raster To
Photoshop
The GRASS image export module r.out.tiff segmentation
faults (crashes) when exporting floating point raster data.
Since reprojection with cubic interpolation, and our shaded
relief script both create floating point GRASS raster files,
this is an obstacle to exporting to Photoshop. It is not
possible to export floating point as binary (the other
standard method of getting data into Photoshop) since
Photoshop only imports integer-binary data. Our work-
around is to use the PPM export format. Photoshop does
not understand PPM, but The GIMP, a free Unix image
editing program, does. Once the file has been opened in
The GIMP, then you can export it as a TIFF file.

B: Grow Pixels Script
echo ""
echo Grow into zero cells
g.ask type=old element=cell desc=raster prompt="Enter source file"
unixfile=/tmp/$$
eval `cat /tmp/$$`
rm -f /tmp/$$
if [! "$file"]
then
 exit 0
fi
src="${fullname}"

echo "$src"

gotit=0
while test $gotit -eq 0
do
 echo -n "iterations: "
 read itrs
 if test $itrs -ge 1 -a $itrs -lt 30
 then
 gotit=1
 else
 echo Sorry, iterations must be greater than 0 and less than
30
 fi
done

echo ""
echo Running r.mapcalc, please stand by.
echo Your new map will be named grown. Please consider renaming.
echo ""

Note: no space allowed after \\:
 r.mapcalc << EOF
 grown = if($src, $src, \\
 if($src[0,-1], $src[0,-1], \\
 if($src[0,1], $src[0,1], \\
 if($src[-1,0], $src[-1,0], \\
 if($src[1,0], $src[1,0] \\
)))))
EOF

#Remove nulls created at edges
r.mapcalc 'grown=if(isnull(grown),0,grown)'

 echo "iteration=1"

 i=2
 while [$i -le $itrs]
 do
r.mapcalc << EOF
 grown = if(grown, grown, \\
 if(grown[0,-1], grown[0,-1], \\
 if(grown[0,1], grown[0,1], \\
 if(grown[-1,0], grown[-1,0], \\
 if(grown[1,0], grown[1,0] \\
)))))
EOF

#Remove nulls created at edges
r.mapcalc 'grown=if(isnull(grown),0,grown)'
 echo "iteration=$i"
 let i=$i+1
done

echo ""
echo New map created and named grown. Consider renaming

