

Evaluation of Cartographic Resources in Researching Landforms in High Mountains

Case study of double ridges in the Polish part of the Tatra Mountains

Igor Drecki and Justyna Żyszkowska

School of Geography, Geology and Environmental Science The University of Auckland Auckland New Zealand *i.drecki@auckland.ac.nz* Tatrzański Klub Narciarski *TATRA TEAM* Zakopane Poland

jzyszkowska@yahoo.com

NEW ZEALAND

TATRZAŃSKI KLUB NARCIARSKI

TATRA TEAM

© Igor Drecki and Justyna Żyszkowska 🛛 i.drecki@auckland.ac.nz · jzyszkowska@yahoo.com 🛛 Mountain Cartography · Lenk · Switzerland · 2008

Introduction

- Overview
 - Researching landforms in high mountains
 - cartography of mountain environments
 - double ridges
 - the Polish part of the Tatra Mountains: study area
 - Cartographic resources
 - topographical maps
 - thematic (gelogical and geomorphological) maps
 - · aerial photography
 - non-cartographic resources
 - Evaluation and conclusions
 - methodology
 - the benchmark
 - results
 - conclusions

Researching Landforms

- Cartography of mountain environments
 - Representation and modelling of mountainous terrain
 - design, tools, databases and visualisations (e.g. Haeberling, 2004; Heuberger and Kriz, 2006; Hurni *et al.*, 2001; Kriz, 1999)
 - Other areas of active research
 - high mountain hazard mapping, monitoring of snow cover and glacier dynamics, cognitive aspects in mountain cartography (e.g. Kaufmann *et al.*, 2006; Kriz, 2001; Trau and Hurni, 2007; Wood *et al.*, 2005)
 - Evaluation of cartographic resources for researching landforms in high mountains
 - evaluation of DEM to represent the Hellenic Volcanic Arc (Vassilopoulou and Hurni, 2001)
 - model suitable for tectonic and geomorphological analysis
 - no examples to illustrate the performance of the model
 - updating landforms (rock and scree) representation on topographical maps (Gilgen, 2006)
 - wide range of cartographic resources used in updating process
 - no evaluation of these resources reported

Researching Landforms cont...

Double ridges

- Definition and terminology

- double ridges are relatively small longitudinal and often asymmetric depressions
 along mountain ridge tops (Jaroszewski *et al.*, 1985)
- the term *double ridge* (or *ridge top depression*) is not well recognised in English geomorphological literature despite being very fitting
 - the term is accepted among the non-English speaking scientific community

– Characteristics

- landform size (the Tatra Mountain example)
 - small: up to 2m deep and up to 80m long
 - medium: 2-10m deep and 80-300m long
 - large: up to 30m deep, 10-70m wide and up to 830m long
- common landform in high mountains on all continents

Researching Landforms cont...

- Double ridges
 - Examples

© Igor Drecki and Justyna Żyszkowska 🛛 i.drecki@auckland.ac.nz • jzyszkowska@yahoo.com 🛛 Mountain Cartography • Lenk • Switzerland • 200

Researching Landforms cont...

- The Polish part of the Tatra Mountains
 - Study area

Cartographic Resources

Topographical map (TOPO)

- Scale 1:10 000, published in 1991 (14 sheets)
- 5m contour interval
- Double ridges represented by contour lines or a configuration of rock drawing symbols
- Interpretation of landforms is sometimes difficult
 - cartographic expertise
 - geomorphological expertise
 - a priori knowledge

Geological map (GEOL 1)

- Scale 1:10 000, published in 1958 (14 sheets)
- Detailed account of complex geology of the area
- Double ridges represented by a series of black lines with ticks facing the inside
- Interpretation of landforms is reasonably easy

© Igor Drecki and Justyna Żyszkowska i.drecki@auckland.ac.nz · jzyszkowska@yahoo.com Mountain Cartography · Lenk · Switzerland · 2008

Geological map (GEOL 2)

- Scale 1:75 000, published in 1989
- Generalised geology of the area
- Double ridges represented by a dedicated black symbol
- Interpretation of landforms is reasonably easy

© Igor Drecki and Justyna Żyszkowska 🛛 i.drecki@auckland.ac.nz + jzyszkowska@yahoo.com 🛛 Mountain Cartography + Lenk + Switzerland + 2008

Geomorphological map (ATLS)

- Scale 1:30 000, published in 1985
- Detailed account of complex geomorphology of the area
- Double ridges represented by a dedicated blue symbol
- Interpretation of landforms is reasonably easy

- Aerial photographs (PHTO)
 - Scale 1:29 000, captured on 15 September 1999
 - Cloud-free aerial images of the area
 - Interpretation of double ridges is possible
 - good photo-interpretation skills are required in some instances
- Non-cartographic resources (KLIM)
 - Geomorphological textbook
 - List of double ridges (31)

© Igor Drecki and Justyna Żyszkowska i.drecki@auckland.ac.nz · jzyszkowska@yahoo.com Mountain Cartography · Lenk · Switzerland · 2008

Evaluation and Conclusions

- Methodology
 - Establishing a solid field-based benchmark
 - Evaluating cartographic resources against the benchmark using SDTS (NIST, 1991) data quality components
- The benchmark
 - A comprehensive field-based survey of double ridges
 - undertaken between 2002 and 2004
 - covering the Polish part of the Tatra Mountains
 - 39 landforms identified and described in detail

🛿 Igor Drecki and Justyna Żyszkowska 🔰 i.drecki@auckland.ac.nz + jzyszkowska@yahoo.com 🛛 Mountain Cartography + Lenk + Switzerland + 2008

Evaluation and Conclusions cont...

- Results
 - Completeness (extent to which information is comprehensive)
 - number of landforms marked on cartographic resources against the benchmark (39 double ridges)
 - TOPO (51%), PHTO (28%), GEOL 2 (26%), GEOL 1 and ATLS (20%)
 - Positional accuracy (difference between positional observation and reality)
 - discrepancy of double ridge locations on cartographic resource (taking into account the scale) and their *true* location
 - considering their scale, all resources displayed satisfactory positional accuracy
 - Attribute accuracy (difference between attribute observation and reality)
 - checking whether double ridges identified on a particular resource had their equivalent in the field
 - GEOL 2 represented two double ridge systems as one
 - KLIM listed one double ridge system as two separate ones; also KLIM listed further five landforms that were not identified against the benchmark

Evaluation and Conclusions cont...

- Results cont...
 - Logical consistency (extent to which information components agree)
 - checking whether representation of landforms on cartographic resources logically corresponds to their size
 - TOPO is missing two large forms, but shows several small ones
 - GEOL 2 is missing four large forms, but shows a couple of small ones
 - PHTO is the most consistent resource showing six large and 5 medium landforms
 - eight double ridges, including one large one, are not identified on any of the resources and there are further five that are listed only in KLIM (non-cartographic resource)
 - there is only one large landform that is represented on all resources
 - Other data quality components
 - lineage only considered in the selection of the TOPO resource
 - no other components were considered

Conclusions

- There is a number of cartographic resources that are accessible and useful in researching high mountain landforms
 - topographical, geological and geomorphological maps, and aerial photographs
- A systematic evaluation of resources revealed their various suitability in supporting such research
 - topographical maps and aerial photographs performed best in identifying and locating double ridges in the Tatra Mountains
 - the evaluation process was limited due to the lack of appropriate metadata

Evaluation and Conclusions cont...

Conclusions cont...

- Many current cartographic resources are not yet sufficient for comprehensive studies of relatively small landforms
 - more detailed resources are required
 - a systematic evaluation is critical in assessing their suitability in researching double ridges or similar landforms in high mountains

Even high quality resources and rigid evaluation procedures would not completely remove a need for comprehensive field surveys

 The adopted approach for studying double ridges was satisfactory in detecting large and medium size depressions

